Open Access
August 2019 A Counterexample to Polynomially Bounded Realizability of Basic Arithmetic
Mohammad Ardeshir, Erfan Khaniki, Mohsen Shahriari
Notre Dame J. Formal Logic 60(3): 481-489 (August 2019). DOI: 10.1215/00294527-2019-0013

Abstract

We give a counterexample to the claim that every provably total function of Basic Arithmetic is a polynomially bounded primitive recursive function.

Citation

Download Citation

Mohammad Ardeshir. Erfan Khaniki. Mohsen Shahriari. "A Counterexample to Polynomially Bounded Realizability of Basic Arithmetic." Notre Dame J. Formal Logic 60 (3) 481 - 489, August 2019. https://doi.org/10.1215/00294527-2019-0013

Information

Received: 16 March 2016; Accepted: 6 November 2017; Published: August 2019
First available in Project Euclid: 4 July 2019

zbMATH: 07120751
MathSciNet: MR3985622
Digital Object Identifier: 10.1215/00294527-2019-0013

Subjects:
Primary: 03F30
Secondary: 03F50

Keywords: Basic Arithmetic , polynomially bounded realizability , primitive recursive realizability

Rights: Copyright © 2019 University of Notre Dame

Vol.60 • No. 3 • August 2019
Back to Top